Name:	
Instructor:	

$\begin{array}{c} \text{Math 10550, Exam I} \\ \text{September 18, 3023} \end{array}$

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.				
Multiple Choice				
11.				
12.				
13.				
Total				

Name: ______
Instructor: _____

Multiple Choice

1.(6 pts.) Compute $\lim_{x \to -1^-} \frac{x^2 + x}{x^2 + 2x + 1}$

(a) $+\infty$

(b) Does not exist and is not ∞ or $-\infty$.

(c) 0

(d) -1

(e) $-\infty$

2.(6 pts.) For what values of c is the function f given by

$$f(x) = \begin{cases} x^2 + c^2 x - 3 & x < 2\\ cx + 5 & x \ge 2 \end{cases}$$

continuous at x = 2?

- (a) c = 2 only
- (b) c = 1 only
- (c) c=2 and c=-1
- (d) c = 0 only
- (e) No value of c makes f continuous at x = 2

Name: ______
Instructor:

3.(6 pts.) Let $f(x) = \sqrt{2x^2 + 1}$. Which of the following limits equals f'(2)?

(a)
$$\lim_{h \to 0} \frac{\sqrt{2(x+h)^2 + 1} - \sqrt{2x^2 + 1}}{h}$$

(b)
$$\lim_{x \to 0} \frac{\sqrt{2x^2 + 1} - 3}{x}$$

(c)
$$\lim_{h\to 2} \frac{\sqrt{2(x+h)^2+1}-3}{h}$$

(d)
$$\lim_{h \to 2} \frac{\sqrt{2(x+h)^2 + 1} - \sqrt{2x^2 + 1}}{h}$$

(e)
$$\lim_{x \to 2} \frac{\sqrt{2x^2 + 1} - 3}{x - 2}$$

4.(6 pts.) Assume that f(x) is a continuous function which takes the following values:

X	-1	0	1	2
f(x)	-10	10	-1	3

Which of the following conclusions can we make by using the Intermediate Value Theorem:

- (a) $f(x) = ax^3 + bx^2 + cx + d$ for some constants a, b, c and d.
- (b) f(x) = 0 has at least three solutions.
- (c) f(x) = 0 has exactly one solution.
- (d) f(x) = 0 has exactly three solutions.
- (e) f(x) = 0 has at most three solutions.

Name: _____ Instructor:

5.(6 pts.)

The graph of f(x) is shown below:

Which of the following is the graph of f'(x)?

(e)

Name: ______

6.(6 pts.) Find f'(x), if

$$f(x) = 2x^2 \sin(\sqrt{x}) + \frac{1}{\sqrt{x}}.$$

- (a) $-\sqrt{x^3}\cos(\sqrt{x}) + 4x\sin(\sqrt{x}) \frac{1}{2\sqrt{x^3}}$
- (b) $2x^2 \cos(\sqrt{x}) + 4x \sin(\sqrt{x}) \frac{1}{2\sqrt{x^3}}$
- (c) $-\sqrt{x^3}\cos(\sqrt{x}) + \sin(\sqrt{x}) + \frac{1}{2\sqrt{x^3}}$
- (d) $\sqrt{x^3}\cos(\sqrt{x}) + 4x\sin(\sqrt{x}) \frac{1}{2\sqrt{x^3}}$
- (e) $4x\cos(\sqrt{x}) \frac{1}{2\sqrt{x^3}}$

Name: _______
Instructor: ______

7.(6 pts.) Find the derivative of $f(x) = \tan(\sin(x^2))$.

- (a) $2x \cot(\sin(x^2))\cos(x^2)$
- (b) $-2x \sec^2(\sin(x^2))\cos(x^2)$
- (c) $2x \sec^2(\sin(x^2)) \sin(x^2)$
- (d) $\cot(\sin(x^2))\cos(x^2)$
- (e) $2x \sec^2(\sin(x^2))\cos(x^2)$

8.(6 pts.) If $f(x) = x \sin x + \cos x$, find f''(x).

- (a) $f''(x) = -\sin x \cos x$
- (b) $f''(x) = -x\sin x + \cos x$
- (c) $f''(x) = x \cos x + \sin x$
- (d) $f''(x) = 3\cos x x\sin x$
- (e) $f''(x) = -x\sin x \cos x$

Name: _______
Instructor: ______

9.(6 pts.) Let $h(x) = f \circ g(x) - \frac{f(x)}{g(x)}$. If f(3) = 0, g(3) = 1, f'(3) = 3, g'(3) = 4, f'(1) = 7, and g'(2) = 5, then find h'(3).

- (a) 0
- (b) 30
- (c) 25
- (d) 10
- (e) 20

10.(6 pts.) If $f(x) = x^3 - 3x^2 - 9x + 7$, find the x-coordinates of all points on the curve with horizontal tangent line.

- (a) x = 0 and x = 1
- (b) x = 4 and x = -2
- (c) x = -3 and x = 1
- (d) x = 3 and x = -1
- (e) No points on the curve have horizontal tangent line.

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(13 pts.) Find the derivative of

$$f(x) = \sqrt{x+1}$$

using the limit definition of the derivative. Please include all of the details in your calculation.

Name:	
Instructor:	

12.(14 pts.) Let $y = x^2 + x$. (a) Find the equation of the tangent line through the point (-1,0).

(b) Find all points on the curve whose tangent line goes through the point (2,5).

Name:	
Instructor:	

13.(13 pts.) Show that there is at least one solution of the equation

$$x^2 = 2 + \sin(\pi x).$$

Justify your answer, identify the theorem you use and explain why the theorem applies.

Name:	
Instructor:	

Rough Work

Name:		
Instructor:	ANSWERS	

$\begin{array}{c} \text{Math 10550, Exam I} \\ \text{September 18, 3023} \end{array}$

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLE	ASE MARK Y	OUR ANSWE	ERS WITH AI	X X, not a circ	ele!
1.	(ullet)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(●)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(•)
4.	(a)	(•)	(c)	(d)	(e)
5.	(a)	(b)	(ullet)	(d)	(e)
6.	(a)	(b)	(c)	(•)	(e)
7.	(a)	(b)	(c)	(d)	(•)
8.	(a)	(•)	(c)	(d)	(e)
9.	(a)	(b)	(ullet)	(d)	(e)
10.	(a)	(b)	(c)	(ullet)	(e)

	Please do NOT	write in this box.			
Multiple Choice					
	11.				
	12.				
	13.				
	Total				